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I Raising the minimum pool elevation could affect water
quality and fish habitat.

F Without sufficient pool level decrease in the winter, organic
matter can build up in the sediments at the upper parts of the
reservoir and cause more “internal nutrient cycling”, especially
in the Little Saluda embayment.



The CE-QUAL-W2 Model was Used to

Assess Lake Murray Impacts

I The CE-QUAL-W2 model was used to evaluate holding
the pool elevation up through out the year to determine
the effects on water quality and fish habitat.

I The model that was setup for eight years to evaluate the
effects of operations on water quality and fish habitat
was used to assess how water quality would be affected
by setting the minimum pool elevation to that being
considered under relicensing.

I The evaluation assessed striped bass habitat in the main
body of the lake and temperature and DO in the
releases.

I The model was used to assess potential water quality
concerns in the Little Saluda embayment.



Evaluation of Raised Pool Levels

Scenarios Considered:

« 354(Jan1) to 358(May1=Sept1) to 354(Dec 31)
« 350(Jan1) to 358(May1=Sept1) to 350(Dec 31)
Assumptions:

« Assumed 500 cfs for minimum release

« Assumed reserve generation averaged 3hr every two weeks at
18,000 cfs

« Balance of releases were assumed to be used to supplement
system demand

Approach:

 The above scenarios were developed by KA using daily average
flows using HEC-ResSim

 CE-QUAL-W2 was run using daily average flows and release flows
were adjusted so that target pool levels were attained

» Using the daily average flows that were adjusted using the CE-
QUAL-W2 model the hourly flows for each day were developed
using the assumptions above
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2005 Surface Elevation, Volume of Striper Habitat and Discharge
Temperature and DO
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Experiences with Sediments from
Douglas Reservoir
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Aquatic Plants

-Affected by depth of water

Affected by clarity of water

*Preferred by some fishermen (mainly large mouth bass?), disliked by other lake
users

*Surface area exposed by dropping minimum pool to 350’ instead of 354’

*Exposure of plants to dry and freezing conditions causes plants to be reduced



Aquatic Plants on lakes with 5 ft and
less annual variation in pool levels
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Sedimentation In Coves

« Can cause more weeds if current sediment is not deep enough, and
then these weeds can trap more sediment

= f(watershed size, land uses in watershed, hydrology of watershed,
types of soil, frequency of high runoff, location within/without
channel (velocity, erosion is important), minimum pool level,
frequency/duration of minimum pool level occurring increases
opportunity for sediment to be moved to lower depths of the
lake and avoid build up that is difficult to be moved,

* Recommend: drop pool elevation to 350ft annually whenever the inflow
at Chappells is greater than 1200 cfs in November of the
previous year



Little Saluda Embayment

Greater impact on water quality is expected to occur in the Little
Saluda River embayment, especially upstream from the bridge on
SC Hwy 391.

This is a relatively large embayment with a small watershed;
therefore, the residence time of water in this embayment can be
longer than the comparable region of the upper part of the main
stem of Lake Murray.

If minimum pool elevation is raised, there will be less water
exchange between this embayment and the main body of Lake
Murray, and there would be less scouring of organic and inorganic
sediments during the winter months.

This would lead to increased “internal cycling” of nutrients in this
embayment to the point that it may become insensitive to nutrient
loads from the watershed because the release of nutrients in the
sediments of the embayment could be sufficient to support eutrophic
conditions in the embayment.

In some cases this condition can lead to the formation of algal mats
on the water, and these mats of algae are known to significantly
affect water quality and water uses.



Assessment of Changes in SOD

and Internal Nutrient Cycling

One factor that is being assessed is the
likelihood for SOD (sediment oxygen demand) to
Increase up to levels seen at other projects In
the SE USA (based on model derived values at
20 projects plus SOD measurements conducted
by EPA at many projects).

This is being supported by seasonal SOD
dynamics measured at Douglas Reservoir
(TVA).

The evaluation involved running two SOD levels:
current estimated level and 2x the current level.

The model was run for a low flow year.



Model Application to Little Saluda
Embayment

2001 Comparison of:
e Calibration case,
e Case with SOD doubled in the Little

Saluda Embayment and upper Lake
Murray , and

* The last case with SOD doubled with no
phosphorus inputs from inflows.
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Total Phosphorus at the surface at location 2

2001 Little Saluda Embayment Km 7.6 Surface
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Chlorophyll-a (mg/fL})

Chlorophyll a near the surface at location 2
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DO Profiles in the Little Saluda
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total but summer hydrology

avg daily |Winter Summer |avg daily |Jan-April, ac-ft less
flow for min. pool, [max pool, |flow Jan- [min Q and reserve
Previous |ft ft April, cfs |generation, multiplied
Nov, cfs by DA/evap multiplier
1927 1,145 .750 448,600}
1928 02] ,018] 540,492
1929 1,189 4,572
1930 367 A76]
19 1,356 .70
19 91| 76
19 2,824 ,654
19 45| .89
1935 18] 274
1936 1,486 ,37_§|
1937 1,223 ,095
1938 1,492 ,846|
19 82 911
4 617 ,580)
4 1,534
4 385
4 809
4 973
4 864
4 ,234
4 ,51
4 72
| 194 ,684
1950 ,66
1951 Al
1952 859
1953 Q(EI
1954 265
1955 509|
1956 477
1957 965
1958 3,417
1959 706
1960 443
1961 ,028)
1962 ,148)
1963 459
1964 ,203)
1965 ,831]
1966 ,262]
1967 27|
1968 40|
1969 ,277]
7 424
.5
L
.570]
.097]
,478)
981
,792)
886
1980 2,617 351 359]
1981 1,282 350] 357,
1982 380 354 359
1983 818 354] 359
1984 1,100] 353
1985 917] 353 357|
1986 2,523 352] 357, A
1987 1,293] 354| 358 X
1988 551] p 269,192[filled
1989 715] 364,344filled
1990 1,000,208|special drawdown
1991
1992 464,559|filled
1993 1,221,315
1994 509,947 filled I
1995 878,715
1996 1,004,241]filled |
1997 768,634|filled
1998 1,434,442
1999 336,288 filled
2000 364,259|
2001 251,003filled
2002 258,296 filled
2003 939,977]did not fill due to operations
2004 295,670]did not fill due to operations
2005 2,008 354] 358 657,351
2006 773] 348| 352 284,593]06 did not get filled from 348
2007 1,462 356 357, 547,699|07 at 356 did not attain 358
PR REPYEY Foahall I 747,430 mean
70 years > 364,000 ac-ft;
410 2<367| 3 9 years < 364,000 ac-t
81 years looks like it's not winter pool that affects summer pool,

364,000 ac-ft of inflow is
i inflow needed to

note Jan-Apr flow is 77% greater than the avg of the rest of the

months

raise pool from 350 to 358




Comparison between November and Jan-April inflows to Lake
Murray from Chappells. When November inflows are greater than
1200 cfs, the Jan-April inflows are sufficient to fill Lake Murray from
elevation 350 to 358 93% of the time.

Monthly Avg flows, cfs
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Concerns for Increasing the Winter Minimum Pool Level
from 350’ to 354’ Every Year

» Sediment accumulation in coves, especially Little Saluda River

» Aquatic plants increasing around the lake, especially the Little Saluda
River embayment

» Organic and nutrient accumulation in sediments of embayments,
especially the Little Saluda River embayment

» Water quality and algae in the Little Saluda River embayment could
already be controlled by internal-cycling (i.e., insensitive to
nutrients in inflows creeks), and increasing the minimum winter
pool to 354’ could cause worse conditions

* Probable impact on the TMDL process on the Little Saluda River
embayment

* Modeling at this point can involve only sensitivity analyses since data
are inadequate to calibrate the model



Conclusions Regarding the Minimum Winter Pool

Level

Regarding the assessment of setting the minimum winter pool level
at elevation 354°, under summer conditions it appears that two-thirds
of the phosphorus in the water column in the Little Saluda River
embayment was caused by internal phosphorus cycling. This
finding indicates that the phosphorus cycling in Little Saluda
embayment is sensitive to organic matter that is formed and settles
to the bottom sediments in the embayment. It is also interesting to
note for the case where phosphorus loads are reduced to zero that
chlorophyll a is reduced for the early part of the summer but not for
the latter part of the summer.

There is a potential for the internal cycling of phosphorus in the Little
Saluda embayment to impact SCDHEC’s TMDL considerations on
the Little Saluda River embayment.



Conclusions Regarding the Minimum Winter Pool Level

Regarding considerations for developing a policy for winter minimum
pool levels, based on data for 1980 through 2007, the winter pool
level was down to about 350 + 2’ about half the time. It would be
best to maintain this frequency of drawing the lake down to this level
each year or risk poorer water quality (sediment accumulation,
weeds, increased nutrient cycling from the sediments espemally In
embayments and greater potential TMDL designation by DHEC that
could lead to very expensive sediment treatments) compared to
current conditions.

Maintaining the frequency of drawing the lake down to 350’ for an
average of every two years should not be difficult based on historical
inflows and pool level data as well as taking advantage of using
November flows to predict the years when Jan-Apr flows would
likely be sufficient.

One interesting observation is that it appears that the minimum
winter pool level has very little to do with attaining and maintaining a
summer pool level at elevation 358 + 1°. It appears that it is the lack
of sufficient inflows during the summer period that causes the pool
elevation to drop like it did in 2007 as well as in other years with low
summer flows.



Conclusions Regarding the Minimum Winter Pool Level (cont.)

The months with highest average flows are Jan-April (i.e., the flow for these
four months averages 77% greater flow than for the other months of the
year), and based on data from 1927-2007 (81 years), only 9 years had what
appeared to be “challenging” low flows that might prevent the lake from
being filled to 358’; however, for the years where pool level data were
available (1980-2007) there was only 1 year when the 358 = 1’ was not
attained: 2006. During 1980-2007, there were 8 years with “challenging”
low flows available to fill the pool to 358 £ 1°, but 2006 was the only year
that this goal was not attained.

Based on data from 1927-2007, when Nov mean flows were 1200 cfs or
greater at Chappells, the Jan-Apr flows were sufficient to safely attain the
358 = 1" goal. The Nov mean flow of 1200 cfs was equaled or exceeded for
41 of the 81 years of record. Using this approach, the pool level in the
winter could be dropped to 350’ on an average frequency of every 2 years.
Considering these 41 years, 3 of the years had “challenging” low flows that
might prevent the lake from being filled to 358 but 2 of these years occurred
during the period 1980-2007 when pool level data were available and in
both of these years the 358 + 1’ goal was attained.

Although there is more likelihood of having greater flows for the period Jan-
Apr when flows are high for the previous Nov, the consequence of dropping
the winter pool elevation to 350 every year and not attaining the 358 + 1’
goal is not great: the estimated maximum number of years when the goal
would not be attained is about 1 in 10 years, but based on actual
experience between 1980 and 2007 it would likely be closer to 1 in 25-50
years. Again, when the summer pool drops after the 358 + 1’ goal is
attained, it is because of low summer inflows, minimum flow provision, and
high evaporation.



Conclusions Regarding the Minimum Winter Pool Level, cont.

Other parts of the lake are likely to be impacted by raising the minimum

pool level to elevation 354

Sediments and suspended solids that enter the lake from tributaries, and
they settle and accumulate near the inflow region to the lake. Dropping the
pool level periodically on a regular basis causes these sediments to be
Ire\?u\?]pended and redeposited to deeper locations in the lake where they do
ittle harm.

Dropping the pool level also causes aquatic plants to be killed or “die back”
by freezing conditions. Exposure of plants to dry and freezing conditions
causes plants to be reduced. This process is likely controlling weeds in
Lake Murray to some extent, especially in the Little Saluda embayment.

Raising the pool level causes sediments to accumulate where aquatic
weeds can grow and take root. After they establish roots, the plants cause
even more sediment to accumulate. Once such sediment complexes get
established, normal periodic scouring action (i.e., scouring flows every few
years like every other year or annually) is not sufficient to re-suspend these
sediments. So in some ways this is practically an irreversible impact.

The phenomena of sediment accumulation in reservoirs at their inflow areas
is a complex process dependent on many factors: watershed size, land
uses in watershed, hydrology of watershed, types of sail, frequency of high
runoff, location within/without channel (veIOC|ty, erosion is important), and
minimum pool level. The frequency/duration of minimum pool level
occurring increases opportunity for sediment to be moved to lower depths of
the lake and avoid build up that is difficult to be moved.



