Flow Release Study

Obtaining Dynamic Flow Routing Information on the Lower Saluda River

Purpose

- Provide Information for Downstream Recreation Flow Assessment Study
 - Determine Approximate Rates of Stage Change, Arrival (Travel) Times, Total Stage Changes
- Study Different Flows Along Various Reaches of River
- Use to Calibrate HEC-RAS Model
- If Possible, Enhance Safety Systems

Terminology

- Stage: Depth of Water (in Feet)
- Rise: Change in Stage (in Feet)
- Rate of Rise: Time it Takes for Stage to Rise (Ex: 0.10 Feet Per Min)
- Arrival Time, or Travel Time: Time it Takes for Releases to Reach a Downstream Location
- Parameters are Specific to a Location and Flow

Primary Purposes for Releases

- Lake Level Management
 - Usually a Scheduled Event
 - Long Duration (Several Hours or Even Days)
- Reserve Generation (Reserve Call)
 - Immediate Need for Replacement Power
 - Short Duration (Less Than Two Hours)
- Recreational Releases
 - Planned Events
 - Duration of Several Hours

Data Collection Locations

- Eight Locations Determined by Members of Resource Conservation Groups
 - Primary Areas of Recreational Use
- Representative of Various Reaches of River
 - Narrow Channels with Steep Banks
 - Wide Rapids Areas
 - Dual Channels at Oh Brother Rapids

Map of Locations

Field Installation

- Challenging Environment
 - Fast-Moving Water, Varying Depths, Rapids
 - Substrate Variations
 - Debris Loading
- Accessibility
- Minimize Equipment
 - Carrying to Location
 - Avoid Drawing Attention (Vandalism)

Data Collection: Levelloggers

- Self-Contained, Programmable Pressure Transducer and Data Recorder
- Collects Pressure in Feet at Set Intervals
 - One Minute Intervals Selected
 - Also Collects Temperature
- Use Barologger to Eliminate
 Atmospheric Pressure Variations

LevelLogger Equipment

Typical Site Installations

Data Collection During Study

- Checked Sites Weekly
- Re-Install Any Failed Equipment Installations
 - Two Site Failures During Study
 - Did Not Lose Data, but Flow Events During Failures were Affected
- Collected Data During Site Visits To Prevent Losing

Flow Release Events

- Twelve Different Flows Released From January 22 - February 15, 2007
- 1,000 cfs Increments up to 6,000 cfs, then 2,000 cfs Increments to 18,000 cfs
- Release Durations Varied During Study
 - Shortest Release 1 hr 20 min, Mimics Reserve Call
 - Longest Duration ~6 hr, Mimics Recreation
 Release or Lake Level Management

Data Evaluation

- Evaluate All Flow Events at Each Location
 - All Flows at Corley Island, All Flows at Mill Race, etc.
- Evaluate Individual Flow Events at All Locations
 - 5,000 cfs at All Locations, 12,000 cfs at All Locations, etc.
- Graphed Data for Examination

Example of One Location, All Flows *Preliminary Study Data

LL #5

Example of One Flow, All Locations

*Preliminary Study Data

Data Evaluation, QA / QC

- Calculate Approximate Rates of Rise at Each Location for Each Flow
- Compare Arrival Times for Different Flow Events, Downstream Locations
- Consider Differences Between Sites: What Affects Rates of Rise, Travel Times, Total Stage?
- o Does It Make Sense?

Preliminary Results, QA / QC

- Some Results Not as Expected
 - Preliminary Arrival Time Problems
 - Discrepancy of Initiating Flows vs.
 Reaching Full Flows; Corrected with Revised Start Times
- Check Site Failures for Errant Data
 - Use Graphs to Determine Quality of Data
 - Noticeable Failure Points, Eliminate Flow Events as Necessary

Complicated Study Evaluation

- Stabilization: How Long Does Each Site Take to Reach Maximum Stage?
 - No Such Thing as Complete Stabilization
 - Duration of Release Greatly Impacts Stages
 Reached for Each Flow Event
 - Release Duration Also Affects Time to Recede
- Selecting Arrival Times can Vary Due to Subtle, Continuous Stage Fluctuations

Interpretation: Find Arrival Time

Subtle Stage Variations can Lead to Discrepancies of 15 Minutes or More with Human Interpretation

Interpretation: Find Maximum Stage

*Preliminary Study Data

Accounting for Flow Variances

- Maximum Stage, Arrival Times, Time to Recede Difficult (or Impossible) to Determine from Actual Field Data
 - Flow Durations Varied
 - This Represents *Real* Operations
 - Not Reasonable to Conduct Field Study of All Flows for Multitude of Durations
 - Account for Precipitation?

Using the River Model

- HEC-RAS Already Being Developed as Part of Operations RCG
 - <u>River Analysis System</u>, Being Developed in Conjunction with HEC-Res Model (Reservoir Operations Model)
- Calibrate River Model to Study Data
- Not Subject to Human Interpretation of Real-World Data (Proved to be Difficult and Inconsistent)

Modeling Data for Various Events

- Can Run Multitude of Scenarios (Such as Flow Durations) at Each Location Studied
- Model can Account for Precipitation that Occurred During Study
- Yields Consistent Arrival Times and Maximum Stage
 - Based on Ideal (Constant) Starting Points, Not Fluctuating Stages

Modeling Flows

- Run Same Flows for 1-1/2, 6, and
 24 hours
- Check vs. Actual Field Study Results (Part of Calibration Procedure)
- Extract Parameters: Maximum
 Stage, Rates of Rise, Arrival Times,
 Time to Recede

Questions?

