# SOUTH CAROLINA ELECTRIC & GAS COMPANY

COLUMBIA, SOUTH CAROLINA

SALUDA HYDROELECTRIC PROJECT

FERC PROJECT NO. 516

# **PROJECT DESCRIPTION**

**EXHIBIT A** 

DECEMBER 2007

Prepared by:



# SOUTH CAROLINA ELECTRIC & GAS COMPANY COLUMBIA, SOUTH CAROLINA

# SALUDA HYDROELECTRIC PROJECT FERC PROJECT NO. 516

PROJECT DESCRIPTION

EXHIBIT A

DECEMBER 2007

Prepared by:



# SOUTH CAROLINA ELECTRIC & GAS COMPANY COLUMBIA, SOUTH CAROLINA

#### SALUDA HYDROELECTRIC PROJECT FERC PROJECT NO. 516

### **PROJECT DESCRIPTION**

# EXHIBIT A

# **TABLE OF CONTENTS**

| 1.0 | PROJECT STRUCTURES                           |      |
|-----|----------------------------------------------|------|
|     | 1.1 Saluda Dam, Spillway, and Spillway Gates | A-1  |
|     | 1.2 Intake Towers and Penstocks              |      |
|     | 1.3 Powerhouse                               | A-3  |
|     | 1.4 Tailrace                                 |      |
|     | 1.5 Bypass Reach                             |      |
| 2.0 | PROJECT IMPOUNDMENTS                         | A-5  |
|     | 2.1 Reservoir                                |      |
| 3.0 | PROJECT GENERATING EQUIPMENT                 | A-6  |
|     | 3.1 Turbines                                 | A-6  |
|     | 3.2 Generators                               |      |
|     | 3.3 Exciters                                 | A-6  |
|     | 3.4 Governors                                |      |
|     | 3.5 Power Transformers                       |      |
|     | 3.6 Miscellaneous Equipment                  | A-7  |
| 4.0 | PROJECT TRANSMISSION LINE                    | A-8  |
| 5.0 | PROJECT FEDERAL LANDS                        | A-9  |
| 6.0 | MCMEEKIN STATION                             | A-10 |

#### **EXHIBIT A**

#### DESCRIPTION OF THE SALUDA HYDROELECTRIC PROJECT

The Saluda Hydroelectric Project is located on the Saluda River in Richland, Lexington, Saluda, and Newberry Counties of South Carolina, near the towns of Irmo and Chapin, approximately 10 miles west of the city of Columbia. The 2,420 square mile watershed area, drained by the Saluda River and its tributaries above Saluda Dam, provides water for Lake Murray and the Saluda Hydroelectric Plant.

Exhibit A-1 provides a location map of the Project, and Exhibit A-2 is a table of project standard numbers.

#### 1.0 **PROJECT STRUCTURES**

The Saluda Hydroelectric Project structures consist of a 7,800 foot long earth fill embankment dam (Saluda Dam), an emergency spillway with six Tainter gates, the Saluda backup dam, a powerhouse, five concrete intake towers and associated penstocks. Descriptions of individual Project components are provided below.

#### 1.1 Saluda Dam, Spillway, and Spillway Gates

The Saluda Dam is an earth fill dam with an additional steel sheet pile wall on the upstream edge of the crest, 213 feet high and nearly a mile and a half long. The maximum width of the dam at the bottom is 1,210 feet, and the minimum width at the crest is 50 feet (increased from 36 feet by the South Carolina Department of Transportation (SCDOT) in 2007). A state highway, SC Route 6, is built along the top of the dam. A dike constructed of various combinations of earthen berm, concrete walls, and sheet pile sections extends northwest from the north end of the dam approximately 2,550 feet alongside SC Highway 6. The top of the dike meets or exceeds the elevation of the sheet pile wall on the Saluda Dam with the exception of a park entrance; in the event of extreme flooding, sandbags would be used to raise this section to meet or exceed the Saluda Dam sheet pile wall.

The emergency spillway is 500 feet from the south end of the dam and is a concrete structure equipped with six steel Tainter gates. Four gates are 37' 6" wide and 25' 0"

high with sill elevations of 338.5' NAVD88<sup>1</sup>; the other two gates are 44' 0" wide and 32' 0" high with sill elevations of 328.5'. The 2,900-foot long spillway channel was excavated in bedrock, and reconnects with the Saluda River approximately three quarters of a mile downstream of the powerhouse. The spillway gates are operated when the reservoir level reaches or is predicted to exceed El. 358.5' to pass flood inflows. At a flood elevation of 368.5', the spillway capacity is approximately 154,000 cfs. Under Probable Maximum Flood (PMF) conditions, the spillway is rated to pass 197,000 cfs with the reservoir at El. 374.4'.

In 2005, a seismic remediation of the Saluda Dam was completed consisting of a new backup dam immediately downstream of and adjacent to the original dam. The backup dam consists of a combination roller compacted concrete (RCC) gravity section and rock fill embankment sections along the downstream toe of the existing dam. The RCC gravity section is founded on bedrock and the rock fill embankments are founded on residual soil. The backup dam is constructed of 1.3 million cubic yards of RCC and 3.5 million cubic yards of rock fill. The backup dam is 213 feet high, with the RCC gravity section (located between the two rock fill embankment sections) being approximately 2,300 feet long and the rock fill berm sections on the north and south ends having a combined length of approximately 5,700 feet. The maximum width of the foundation of the back-up berm is approximately 150 feet for the RCC section and 425 feet for the rock fill embankment sections. The crest elevation of the backup dam is El. 372', and the maximum crest width is 40 feet for the RCC section and 20 feet for the rock fill sections. During the seismic remediation, additional rock fill was also added to the downstream slope of the original Saluda Dam to provide a base for two additional traffic lanes for SC Route 6.

#### 1.2 Intake Towers and Penstocks

Water is supplied to the powerhouse through five 223-foot high intake towers, four of which are 30 feet in diameter, and the fifth 60 feet in diameter. An aerial cable tramway runs between the crest of the dam and the intake towers. The 30' diameter

<sup>&</sup>lt;sup>1</sup> All elevation references in Exhibit A are given in North American Vertical Datum 1988 (NAVD 88); conversion to traditional plant datum (PD, used in numerous supporting studies for this license application and often erroneously referred to as MSL) requires the addition of 1.50 feet.

intake towers for Units 1, 2, 3, and 4 each have two 9' wide x 14' high Broome Roller Gates. The 60' diameter intake tower for Unit 5 contains six Broome Roller Gates, each 10' wide x 10' high.

At the bottom of each of the four smaller-diameter towers, a 16-foot diameter penstock 1091 feet long supplies water to Units 1 - 4; at the turbine inlet of each is a 16-foot diameter S. Morgan Smith electrically operated butterfly value. Water entering the Unit 5 Intake Tower passes first through a 491-foot section of open concrete arch conduit, then through a 227-foot divided section of arch conduit containing two 14-foot diameter penstocks followed by a 42 foot long bifurcation, and finally through a 364-foot section of single, 20-foot diameter penstock to the Unit 5 scroll case.

#### 1.3 <u>Powerhouse</u>

The Saluda Hydro Powerhouse is constructed of a reinforced concrete foundation with a steel-framed brick superstructure. The original structure (which contains the turbines and generators for Units 1 through 4) is 91 feet wide, 254 feet long and has a total structural height of 121 feet. A reinforced concrete extension, 89 feet wide and 77 feet long with a structural height of 70 feet, was constructed to house the turbine for Unit No. 5. The original brick superstructure houses generators and auxiliary equipment for Units 1 through 4, but was not extended to house the generator for Unit No. 5, which is enclosed in a weather-tight housing on an open deck. Auxiliary equipment for Unit 5 is located inside the concrete extension, on the turbine floor.

Three of the four original generators are rated at 32.5 MW and the fourth (Unit 3) has been rewound to a rating of 42.3 MW. The original four turbines are each rated at 55,000 HP at 180 feet of head. The generator for Unit 5 is rated at 67.5 MW, and the turbine is rated at 98,300 HP at 156' head. The total rated generator capacity for the station is 207.3 MW.<sup>2</sup> At optimum gate openings, the hydraulic capacity of each of

<sup>&</sup>lt;sup>2</sup> The current license gives the station capacity as 202.6 MW. This value was based on a power factor of 0.8 for the original four generators. When Unit 3 generator was rewound, its power factor changed to 0.9, and this change was not taken into account in the application for the current license.

the Units 1 to 4 is 3,000 cfs, and for Unit No. 5 is 6,000 cfs, yielding a total station hydraulic capacity of 18,000 cfs.

The intake towers for Unit Nos. 1 to 4 draw water from near the bottom of the reservoir at a depth of about 175 feet, while Unit No. 5 takes water from a depth of about 55 feet. During the late summer and early fall, the water on the bottom of the reservoir has very little to no dissolved oxygen (DO). All five turbine runners are equipped with hub baffles and vent pipes through the head covers to improve dissolved oxygen (DO) concentrations downstream of the Project.

# 1.4 <u>Tailrace</u>

The tailrace of the project is made up of a portion of the original riverbed, along with an excavated section, both consisting of mostly bedrock. Water levels in the tailrace typically fluctuate between El. 171.0' and 183.4' depending on the magnitude and duration of plant operation. The normal tailwater level during low-end operation (releasing minimum flows only) is El. 171.0', corresponding to a total gross head of 185.5 feet during the normal summer maximum pool and 177.5 feet during the normal winter drawdown. Under flood conditions in June 1965, the tailwater reportedly rose to an elevation of approximately 197.5 feet, with four spillway gates operating.

# 1.5 <u>Bypass Reach</u>

There is no bypass reach associated with this Project.

#### 2.0 PROJECT IMPOUNDMENTS

#### 2.1 <u>Reservoir</u>

Lake Murray covers a normal maximum operating water surface area of 75 square miles or approximately 48,000 acres. The normal maximum operating water surface elevation is 356.5' during the summer months, although the current license permits a maximum operating level (full pool) of El. 358.5'. At full pool, the reservoir is 41 miles long and about 14 miles wide at its widest point, with 691 miles of shoreline, including islands. Water surface area at full pool is 79.5 square miles or approximately 50,900 acres, with total or gross storage of approximately 2,000,000 acre-feet (650 billion gallons) of water. Active storage is approximately 635,000 acre-feet (207 billion gallons) of water between full pool and El. 343.5', corresponding to the current license drawdown limit.

The reservoir shoreline is irregular, due to many creek beds and drainage ways cut through the terrain. Inflow is generally cooler than the reservoir water, but often carries high sediment loads. The reservoir undergoes thermal stratification annually, typically July though November, with the thermocline occurring between 20 and 40 feet deep. Four municipal water intakes have been constructed in the reservoir to date to serve the Cities of Columbia, West Columbia and Town of Lexington, the City of Newberry, and Newberry County. Saluda County was granted approval for a municipal water withdrawal by FERC order dated June 9, 2006 (revised by FERC order dated March 22, 2007).

# 3.0 PROJECT GENERATING EQUIPMENT

The Project generating equipment consists of the following:

#### 3.1 <u>Turbines</u>

Units one, two, three, and four are S. Morgan Smith vertical Francis-type turbines each rated at 55,000 HP at 180' head. Synchronous speed is 138.5 RPM.

Unit five is a Baldwin-Lima-Hamilton (BLH) vertical Francis-type turbine rated at 98,300 HP at 156' head. Synchronous speed is 128.6 RPM.

#### 3.2 <u>Generators</u>

Units 1 through 4 have original Westinghouse 3-phase, 60-cycle, 13,800 V generators. The generators for units 1, 2, and 4 have the original rating of 40,625 KVA at 0.8 power factor (32.5 MW); Unit 3 generator has been rewound to a rating of 47,000 KVA at 0.9 power factor (42.3 MW). These four generators are housed on the generator floor inside the original brick superstructure.

Unit five has a 3-phase, 60-cycle, 13,800 V General Electric generator rated at 75,000 KVA with a 0.9 power factor (67.5 MW). The generator for unit 5 is enclosed in a weather-tight housing on an open deck adjacent to the original powerhouse superstructure.

The total rated capacity for all five generators is 207.3 MW.

# 3.3 Exciters

Units one through four are each equipped with an exciter and a Permanent Magnet Generator (PMG), both direct connected above the generator rotor.

Unit five is equipped with an AC exciter and rotating rectifier.

# 3.4 <u>Governors</u>

Units 1 through 4 have Woodward Type A actuator governors that are interconnected in pairs. Unit 5 has its own BLH "Pelton" type actuator governor and pressure tank.

### 3.5 <u>Power Transformers</u>

Units one, three, and four power transformers are 3-phase, 41,667/46,667 KVA with 55°/65° C temperature rise, type F.O.W., 115/13.2 KV. The Unit two power transformer is 3-phase, 40,000 KVA with 55° C temperature rise, type F.O.W., 115/13.2 KV.

The power transformer for Unit five is 3-phase, 76,785/86,000 KVA, type F.O.A., 115/13.2 KV with 55°/65° C temperature rise.

#### 3.6 <u>Miscellaneous Equipment</u>

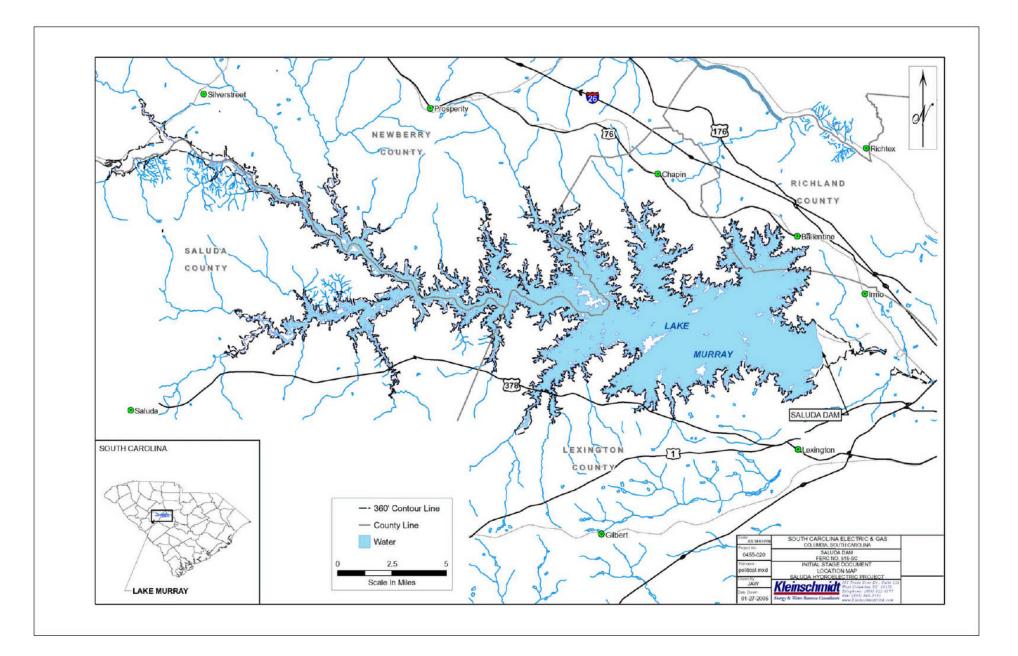
Miscellaneous equipment includes a 175-ton, traveling Bedford bridge crane and all accessory electrical equipment, including instrumentation, batteries, switchgear, etc.

# 4.0 PROJECT TRANSMISSION LINE

There is no transmission line associated with the Saluda Hydroelectric Project. The electric power is generated at 13,200 volts and is transformed to 115 KV. The power enters the Applicant's transmission system through the nearby Saluda Substation, which is not a part of the Project.

# 5.0 PROJECT FEDERAL LANDS

There are no Federal lands which are a part of the Saluda Hydroelectric Project.


# 6.0 MCMEEKIN STATION

McMeekin Station is a coal fired power plant located adjacent to the hydro powerhouse on the north side of the Saluda River. It is operated by South Carolina Electric & Gas Company (SCE&G), but is not part of the Project. Ash disposal facilities for McMeekin Station are within the Saluda Project boundary, and cooling water for the McMeekin condensers is taken from and returned to two of the Saluda Hydro penstocks.

#### EXHIBIT A-1

#### Saluda Hydroelectric Project P-516

Project Location Map



#### EXHIBIT A-2

#### Saluda Hydroelectric Project P-516

#### Table of Standard Project Numbers

| DESCRIPTION      |                                        | NUMBER OR FACT                                                                                                                                               |  |  |  |  |
|------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Project Lo       | cation                                 | 10 mi west of City of Columbia;<br>Richland, Lexington, Saluda and Newberry Counties                                                                         |  |  |  |  |
| GENERAL          |                                        |                                                                                                                                                              |  |  |  |  |
| Project dra      | ainage area                            | 2,420 sq. miles                                                                                                                                              |  |  |  |  |
| Station rat      | ted generating capacity                | 207,300 kW                                                                                                                                                   |  |  |  |  |
| Estimated        | reliable capability                    | 206,000 kW                                                                                                                                                   |  |  |  |  |
| Annual ge        | neration                               | 245 million kWh or 245,200 Mwh                                                                                                                               |  |  |  |  |
| Discharge        | at rated capacity                      | 18,000 cfs                                                                                                                                                   |  |  |  |  |
| Minimum          | recorded daily average flow            | 285 cfs (measured @ USGS gauging station near Riverbanks Zoo)                                                                                                |  |  |  |  |
| DAMS & RESERVOIR |                                        |                                                                                                                                                              |  |  |  |  |
| Original D       | am Type & dimensions                   | Earthfill embankment, 213 ft high, 7,800 ft long, crest el. 375.5' NAVD88                                                                                    |  |  |  |  |
| Backup Da        | am Type & dimensions                   | Rockfill embankments & RCC gravity, 213 ft high, 8,000 ft long, crest el. 372.0' NAVD88                                                                      |  |  |  |  |
| Reservoir        | Max. Oper. Level<br>(Full Pool) & Area | 358.5' NAVD88; 50,000 acres                                                                                                                                  |  |  |  |  |
|                  | Min Oper. Level                        | 343.5' NAVD88                                                                                                                                                |  |  |  |  |
|                  | Total storage at full pool             | 2,000,000 acre-feet (at El. 358.5' NAVD88)                                                                                                                   |  |  |  |  |
|                  | Active storage                         | 635,000 acre-feet between El. 358.5' and El. 343.5' NAVD88                                                                                                   |  |  |  |  |
| SPILLWAY         |                                        |                                                                                                                                                              |  |  |  |  |
| Spillway G       | Bates Number & type                    | 6 Radial Tainter, electrically operated with air motor backup                                                                                                |  |  |  |  |
|                  | Gate dimensions                        | <ul> <li>4 @ 37ft 6in long by 25 ft high w/sill elevation of 338.5' NAVD88</li> <li>2 @ 44ft long by 32 ft high w/sill elevation of 328.5' NAVD88</li> </ul> |  |  |  |  |
|                  | Maximum discharge                      | 91,000 CFS at full pool el. 358.5' NAVD88<br>197,000 CFS at Probable Max. Flood pool el. 374.4' NAVD88                                                       |  |  |  |  |
| POWERHOUSE       |                                        |                                                                                                                                                              |  |  |  |  |
| Units 1 - 4      | Construction type                      | Concrete block, brick, steel                                                                                                                                 |  |  |  |  |
| Unit 5           | Construction type                      | Reinforced concrete                                                                                                                                          |  |  |  |  |

#### EXHIBIT A-2

#### Saluda Hydroelectric Project P-516

#### Table of Standard Project Numbers

| DESCRIPTION   |                                  | NUMBER OR FACT  |                 |                 |                 |                           |
|---------------|----------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------------|
| INTAKE TOWERS |                                  | Unit 1          | Unit 2          | Unit 3          | Unit 4          | Unit 5                    |
|               | Diameter                         | 30 ft           | 30 ft           | 30 ft           | 30 ft           | 60 ft                     |
|               | Height                           | 223 ft                    |
| PENSTOCKS     |                                  | Unit 1          | Unit 2          | Unit 3          | Unit 4          | Unit 5                    |
|               | Diameter                         | 16 ft           | 16 ft           | 16 ft           | 16 ft           | 20 ft                     |
|               | Length                           | 1091 ft         | 1091 ft         | 1091 ft         | 1091 ft         | 1124 ft                   |
| TURBINES      |                                  | Unit 1          | Unit 2          | Unit 3          | Unit 4          | Unit 5                    |
|               | Manufacturer                     | S. Morgan Smith | S. Morgan Smith | S. Morgan Smith | S. Morgan Smith | Baldwin-Lima-<br>Hamilton |
|               | Туре                             | Vert. Francis             |
|               | Rated net head                   | 180 ft          | 180 ft          | 180 ft          | 180 ft          | 156 ft                    |
|               | Rated maximum discharge capacity | 3,000 CFS       | 3,000 CFS       | 3,000 CFS       | 3,000 CFS       | 6,000 CFS                 |
|               | Draft tube invert elevation      | 157 ft NAVD88   | 157 ft NAVD88   | 157 ft NAVD88   | 157 ft NAVD88   | 149.6 ft NAVD88           |
|               | HP rating at rated head          | 55,000          | 55,000          | 55,000          | 55,000          | 98,300                    |
|               | Synchronous speed (rpm)          | 138.5           | 138.5           | 138.5           | 138.5           | 128.6                     |
| GENERATORS    |                                  | Unit 1          | Unit 2          | Unit 3          | Unit 4          | Unit 5                    |
|               | Manufacturer                     | Westinghouse    | Westinghouse    | Westinghouse    | Westinghouse    | General Electric          |
|               | Туре                             | AC              | AC              | AC              | AC              | AC                        |
|               | Phases                           | 3               | 3               | 3               | 3               | 3                         |
|               | Voltage                          | 13,800 V                  |
|               | Frequency                        | 60 Hz                     |
|               | KVA rating                       | 40,625          | 40,625          | 47,000          | 40,625          | 75,000                    |
|               | Power factor                     | 0.8             | 0.8             | 0.9             | 0.8             | 0.9                       |
|               | KW output                        | 32,500          | 32,500          | 42,300          | 32,500          | 67,500                    |
| TRANSFORMERS  |                                  | Unit 1          | Unit 2          | Unit 3          | Unit 4          | Unit 5                    |
|               | Туре                             | OIWC            | OIWC            | OIWC            | OIWC            | FOA                       |
|               | Voltage                          | 13.2/115-kV     | 13.2/115-kV     | 13.2/115-kV     | 13.2/115-kV     | 13.2/115-kV               |
|               | Phases                           | 3               | 3               | 3               | 3               | 3                         |
|               | KVA Rating                       | 41,667/46,667   | 40,000          | 41,667/46,667   | 41,667/46,667   | 76,785/86,000             |
|               | Temp. Rise                       | 55°/65°C        | 55°C            | 55°/65°C        | 55°/65°C        | 55°/65°C                  |