SOUTH CAROLINA ELECTRIC & GAS COMPANY SALUDA HYDRO PROJECT RELICENSING Instream Flow/Aquatic Habitat Technical Working Committee Via Conference Call April 10, 2007

Final CSB 05-22-07

ATTENDEES:

Dick Christie, SCDNR Alan Stuart, Kleinschmidt Associates Milton Quattlebaum, SCANA Services Jeni Summerlin, Kleinschmidt Associates Mike Waddell, Trout Unlimited Gerrit Jobsis, AR/CCL Shane Boring, Kleinschmidt Associates Brandon Kulik, Kleinschmidt Associates Hal Beard, SCDNR

ACTION ITEMS

- Gather and distribute substrate HSC plots and legends from Catawba-Wateree study for brown trout fry/spawning/juveniles to TWC *Dick Christie / Shane Boring*
- Finalize HSC curves based on TWC input and incorporate as an appendix to the Saluda IFIM Study Plan

Shane Boring/Brandon Kulik

NEXT MEETING

TBD

SOUTH CAROLINA ELECTRIC & GAS COMPANY SALUDA HYDRO PROJECT RELICENSING Instream Flow/Aquatic Habitat Technical Working Committee Via Conference Call April 10, 2007

Final CSB 05-22-07

MEETING NOTES:

These notes serve as a summary of the major points presented during the meeting and are not intended to be a transcript or analysis of the meeting.

Shane Boring opened the meeting at approximately 9:00 AM. Shane noted that, at the January 22nd meeting of the Instream Flow/Aquatic Habitat Technical Working Committee (TWC), the TWC had agreed upon Habitat Suitability Criteria (HSC) for depth and velocity for several target species (smallmouth bass, brown trout, and rainbow trout adults). Shane added that the purpose of today's meeting would be to finalize the HSC selection process by selecting substrate criteria for these species.

Shane enquired as to whether there was any follow-up discussion regarding the depth/velocity criteria selection process or other TWC housekeeping items in need of attention. Hal Beard noted that, at the previous meeting, there was an action item assigned to determine whether HSC curves were available for gizzard shad in riverine systems. Hal added that, after discussing this issue with colleagues at SCDNR, he did not think this species was as much of a priority as he had once thought.

Dick Christie reminded the group that DNR manages the lower Saluda as a put-grow-take trout fishery, and as such, he and other DNR staffers had requested at previous TWC meetings that the habitat modeling for trout focus on adult lifestages (i.e. not include spawning, juvenile, fry). He added that, while DNR certainly welcomes any improvements to water quality or habitat that might benefit these early-lifestages, flow recommendations resulting from the IFIM process should not come at the detriment of providing quality growing conditions for stocked adult and sub-adult trout. Dick added that, while looking at early lifestages in the modeling might be good to have for informational purposes, these lifestages were not within the DNR's management strategy for the lower Saluda. Mike Waddell noted that Trout Unlimited does not agree with DNR's strategy of managing only for adult lifestages.

The group then turned their attention to the memo prepared by Shane Boring and Brandon Kulik (Attachment A), which summarized potential source HSC for substrate from a number of regional studies. After reviewing the source HSC plots for applicability to the lower Saluda, TWC members agreed on substrate HSC for the following species and lifestages:

SOUTH CAROLINA ELECTRIC & GAS COMPANY SALUDA HYDRO PROJECT RELICENSING Instream Flow/Aquatic Habitat Technical Working Committee Via Conference Call April 10, 2007

Final CSB 05-22-07

Species	Life Stage	Curve Source	Modifications
brown trout	adult	Deerfield	Change 'Ledge' to 'Irregular Bedrock' and change SI of this category to 1.0
	juvenile	Deerfield	Change 'Ledge' to 'Irregular Bedrock' and change SI of this category to 1.0
	Fry	Deerfield	Change 'Ledge' to 'Irregular Bedrock'
	Spawning	Deerfield	
rainbow trout	Adult	Deerfield	Change 'Ledge' to 'Irregular Bedrock' and change SI of this category to 1.0; Lower SI for 'Roots, Snags, Undercut banks, Overhead Cover' to 0.2
smallmouth bass	Adult	Deerfield	Change 'Ledge' to 'Irregular Bedrock'
	Juvenile	Deerfield	Change 'Ledge' to 'Irregular Bedrock'
	YOY	Deerfield	Change 'Ledge' to 'Irregular Bedrock'
	spawning	Deerfield	Change 'Ledge' to 'Irregular Bedrock'

The group was not able to reach consensus on an acceptable substrate HSC for rainbow trout juveniles, fry or spawning due to limited source information (i.e., only the Raleigh et al. "Blue Book" value were presented). Mike Waddell, expressed interest in evaluating the curves used in the Catawba-Wateree IFIM Study before making a final selection for these lifestages. Dick Christie noted that these curves were presented in the Catawba-Wateree Final IFIM Report, but added that the legends needed to interpret the plots were not included. Dick agreed to contact the authors regarding the legends. Shane agreed to distribute the curves to the TWC once all of the information is gathered.

The meeting adjourned at approximately 11:00 AM.

Z: \SCO\455\029\2007-04-10 Instream Flow-Aquatic Habitat TWC Meeting Notes Final.doc

SOUTH CAROLINA ELECTRIC & GAS COMPANY SALUDA HYDRO PROJECT RELICENSING Instream Flow/Aquatic Habitat Technical Working Committee Via Conference Call April 10, 2007

Final CSB 05-22-07

Attachment A

Memo Summarizing Potential Source Habitat Suitability Curves for Substrate for Smallmouth Bass and Rainbow and Brown Trout Lifestages

MEMORANDUM

RE:	INSTREAM FLOW STUDY: HABITAT SUITABILITY CRITERIA
DATE:	March 30, 2007
FROM:	Shane Boring, Brandon Kulik
TO:	Saluda Hydro: Instream Flow/Aquatic Habitat TWC

On January 22nd, 2007, the Instream Flow/Aquatic Habitat Technical Working Committee (TWC) agreed upon Habitat Suitability Criteria (HSC) depth and velocity criteria for target species and lifestages (smallmouth bass, brown trout, and rainbow trout adults, juveniles, young-of-year, and spawning). Criteria from various source studies were evaluated based on transferability to the lower Saluda River (Table 1);

Although depth and velocity HSC were adapted for adult, juvenile, fry/young-of-year, and spawning smallmouth bass, as well as brown and rainbow trout (Table 2), the TWC did not time to completely evaluate substrate suitability. The purpose of this memo is to build upon the decisions made at the January 22nd 2007 TWC meeting by summarizing HSC for substrate and embeddedness for rainbow and brown trout, and smallmouth bass.

SPECIES	SOURCE	RIVER	ECO-REGION	PHYSIOGRAPHIC REGION
Smallmouth bass	Leonard <i>et al.</i> (1986)	Upper James (VA)	Mid-Atlantic	Appalachian Ridge and Valley
Smallmouth bass	NEP (1990)	Deerfield (MA)	New England	New England Upland
Smallmouth bass	Lockhart IFIM study	Broad (SC)	Southeastern	Piedmont
Smallmouth bass	Groshens and Orth (1994)	N. Anna and Craig Creek	Southeastern Plains	Appalachian Ridge and Valley and Piedmont
Smallmouth bass	Edwards, et al (1983)	Generic		
Rainbow trout	KA (2001)	Lackawaxen, (PA)	Mid-Atlantic	Appalachian Plateau
Rainbow trout	NEP (1990)	Deerfield (MA)	New England	New England Upland
Rainbow trout	Raleigh, et al (1986)	Generic "Blue Book" data		
Brown trout	KA (2001)	Lackawaxen, (PA)	Mid-Atlantic	Appalachian Plateau

Table 1: Summary of Source Studies Evaluated for Depth and Velocity Habitat Suitability Criteria Suitability Criteria

Brown trout	NEP (1990)	Deerfield (MA)	New England	New England Upland
Brown trout	Strakosh, et al. 2003	Farmington (CT)	New England	New England Upland
Brown trout	CT DEP	Housatonic (CT)	New England	New England Upland
Brown trout	Raleigh, et al (1984)	Generic "Blue Book" data		

Table 2.	Summarv	of Accept	able HSC	Curves as	Identified E	By The TWC
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	01110000		C	10011011000 2	.,

Species	Life Stage	Parameter	SI Curve Source
			Combination: Housatonic (poor cover),
brown trout	adult	Depth	Deerfield
	adult	Velocity	Lackawaxen, w/modifications
brown trout	fry/YOY	Depth	Deerfield
	fry/YOY	Velocity	Deerfield
brown trout	juvenile	Depth	Combination: Deerfield, Raleigh
	juvenile	Velocity	Combination: Lackawaxen, Deerfield
brown trout	spawning	Depth	Raleigh
	spawning	Velocity	Raleigh w/modifications
rainbow trout	adult	Depth	Deerfield
		Velocity	Deerfield (abundant)
rainbow trout	fry/YOY	Depth	Raleigh
		Velocity	Raleigh
rainbow trout	juvenile	Depth	Lackawaxen
		Velocity	Lackawaxen
rainbow trout	spawning	Depth	Raleigh
		Velocity	Raleigh
smallmouth			
bass	adult	Depth	Combination: Groshens & Orth, Bain
		X7 1 ·	Combination: Groshens & Orth, Deerfield
smallmouth		Velocity	(abundant velocity refuge)
hass	iuvenile	Denth	Combination: Bain Deerfield w/modifications
0455	juvenne	Velocity	Deerfield (abundant velocity refuge)
smallmouth		veroency	Deerneta (abandant veroenty retuge)
bass	spawning	Depth	Lockhart
		Velocity	Lockhart
smallmouth		2	
bass	YOY	Depth	Combination: Groshens & Orth, Bain
		Velocity	Combination: Deerfield, Bain

SUBSTRATE CRITERIA OPTIONS

Brown Trout

We obtained HSC successfully applied in IFIM studies from the Farmington (CT) (Strakosh, et al. 2003), Deerfield (MA) (NEP, 1990), and Housatonic (CT) (CT DEP) rivers, as well as the generalized "Bluebook" criteria (Raleigh, *et al.*, 1986) that have been employed in several regional PHABSIM studies. Appendix A contains graphical representations of substrate criteria for juvenile and adult lifestages. For brown trout juveniles and adults, substrates ranging from gravel/pebble to cobble/small boulder were generally found to be the most suitable, along with undercut banks and vegetation for some studies. The degree of substrate embeddedness is also a sub-criterion.

Rainbow Trout

HSC criteria developed for the Deerfield River (MA) and generalized "Bluebook" criteria (Raleigh, *et al.*, 1984) are presented in Appendix B. Although the studies varied in how some substrate sizes were classified, habitat suitability was generally similar between studies, with gravel, cobble and boulder substrates being more suitable than silt, sand and mud. This was particularly true of the early lifestages, i.e. spawning, fry, juvenile. The degree of substrate embeddedness is also a sub-criterion.

Smallmouth Bass

Substrate HSC criteria developed for the Deerfield River (MA), James (VA) (Leonard, et al., 1986) and generalized "Bluebook" criteria (Edwards, *et al.*, 1993) are presented in Appendix C. There is relatively good general agreement among all curves relative to substrate and cover suitability, with large cobble/boulder tending to be optimal, and silt/sand/organics being less suitable.

LITERATURE CITED

- Edwards, E.A., G. Gebhart, and O.E. Maughan. 1983. Habitat suitability information: smallmouth bass. U.S. Dept. Int., Fish Wildl. Serv. FWS/oES-32/10.36 47 pp.
- Connecticut Dept. of Environmental Protection. (unpublished data). Housatonic River IFIM SI criteria. Peter Aarestad, CTDEP, personal communication.
- Groshens, T.P. and D.J. and Orth. 1994. Transferability of habitat suitability criteria for smallmouth bass, *Micropterus dolomieu*. Rivers (4)3:194-212
- Leonard, P.M., D.J. Orth, and C.J. Goodreau. 1986. Development of a method for recommending instream flows for fishes in the upper James River, Virginia. VA poly Inst. and State Univ., Blacksburg, VA. Bull. 152, 109 pp.
- New England Power Company. 1990. New England Power Company, Deerfield River Project IFIM Study. Stetson-Harza, Weare, NH.
- Newcomb, T.J., S.A. Perry and W.B. Perry. 1995. Comparison of habitat suitability criteria for smallmouth bass (*Micropterus dolomieu*) from three West Virginia rivers. Rivers 5(3):170-183.
- Perry, S.A., W.B. Perry, D.L. Graham and N.H. Sagalkin. 1993. Verification and transferability studies for smallmouth bass in West Virginia streams. West Virginia Coop. Fish and Wildl. Res. unit, West Virginia Univ., Morgantown, WV.WVCFRUWRU Cooperative Agreement 14-16-0009-1563. 25 pp. plus appendices.
- Raleigh, R.F., L.D. Zuckerman, and P.C. Nelson. 1986. Habitat suitability index models and instream flow suitability curves: Brown trout, revised. U.S. Fish and Wildl. Serv. FWS/OBS-82(10.124). 65 pp..
- Raleigh, R.F., T Hickman, R.C. Solomon and P.C. Nelson. 1984. Habitat suitability information: Rainbow trout. U.S. Fish and Wildl. Serv. FWS/OBS-82/10.60 64 pp.
- Strakosh, T.R., R.M. Neumann, and R.A. Jacobsen. 2003. Development and assessment of habitat suitability criteria for adult brown trout in southern New England rivers. Ecology of Freshwater Fish 12:265-274. Blackwell Munksgaards, 2003.

Appendix A Brown Trout Substrate Habitat Suitability Criteria

S	ubstrate Codes from Bovee (1982)		
Code	Description	Size (mm)	Size (in)
1	plant/detritus/organic material		
2	mud/soft clay		
3	silt	<0.062	
4	sand	0.062 – 2.0	
5	gravel	2.0 - 64	
6	cobble	64 - 250	
7	boulder	250 – 4000	
8	bedrock	solid	

Appendix A, Table 1: Substrate Classification Codes - Raleigh

Appendix A, Table 2: Substrate Classification Codes - Deerfield & Housatonic

Code	Description	Size (mm)	Size (in)
1	Roots, Snags, Undercut Banks, Overhead	Cover	
2	Clay		
3	Silt		
4	Sand		
5	Small Gravel	< 5.1	< 2
6	Gravel	5.1 - 10.2	2-4
7	Cobel	10.2 - 25.4	4 - 10
8	Boulder	25.4 - 61	10 in - 2 ft
9	Boulder	>61	> 2 ft
10	Ledge		
11	Detritus, Vegetation		

Appendix A, Table 3: Substrate Classification Codes - Farmington

· · · · · · · · · · · · · · · · · · ·				
Code	Description	Size (mm)	Size (in)	
1	Fines/Flat Bedrock	< 2	< .08	
2	Gravel	2 - 16	0.08 - 0.63	
3	Pebble	16 - 64	0.63 - 2.52	
4	Cobble	64 - 256	2.52 - 10.08	
5	Boulder	> 256	> 10.08	
6	Irregular Bedrock			

Adult Brown Trout

Juvenile Brown Trout

Spawning Brown Trout

Appendix B Rainbow Trout Substrate Habitat Suitability Criteria

¹ See Appendix A for substrate codes and descriptions.

Rainbow Trout Fry

Appendix C Smallmouth Bass Substrate Habitat Suitability Criteria

Code	Description	Size (mm)	Size (in)
	Silt		
	Sand		
	Gravel	4-75	< 3 in. diam,
	Rubble	75-300	3-12 in. diam.
	Boulder	300-600	1-3 ft. diam.
	Bedrock		

Appendix C, Table 1: Substrate Classification Codes - Bain

Appendix C, Table 2: Substrate Classification Codes - Deerfield

Code	Description	Size (mm)	Size (in)
1	Roots, Snags, Undercut Banks,	Overhead Cover	
2	Clay		
3	Silt		
4	Sand		
5	Small Gravel	< 5.1	< 2
6	Gravel	5.1 - 10.2	2-4
7	Cobel	10.2 - 25.4	4 - 10
8	Boulder	25.4 - 61	10 in - 2 ft
9	Boulder	>61	> 2 ft
10	Ledge		
11	Detritus, Vegetation		

Appendix C, Table 3: Substrate Classification Codes - Leonard

Code	Description	Size (mm)	Size (in)
1	Organic		
2	Fines		
3	Sand		
4	Small Gravel		<2 inches diam.
5	Large Gravel		2-4 inches diam.
6	Small Cobble		4-7 inches diam.
7	Large Cobble		8-10 inches diam.
8	Small Boulder		10-24inches diam.
9	Large Boulder		> 2 ft diameter
10	Bedrock		

Appendix C, Table 4: Substrate Classification Codes - Lockhart

Code	Description	Size (mm)	Size (in)
1	mud	<1	< 0.4
2	sand	1 - 2	0.4 - 0.8
3	small gravel	2 - 16	0.8 - 6.3
4	large gravel	16 - 64	6.3 - 25.2
5	small cobble	64 - 128	25.2 - 50.4
6	large cobble	128 - 256	50.4 - 100.8
7	small boulder	256 - 512	100.8 - 201.6
8	large boudler	> 512	> 201.6
9	bedrock	-	

Juvenile Smallmouth Bass

Smallmouth Bass YOY

Smallmouth Bass Spawning

01/16/07 - CLB 0455029.00-93-03 Z:\SCO\455\029\2007-01-16 Saluda Instream Flow Study - Habitat Suitability Criteria.doc